• 中国科学引文数据库核心期刊
  • 中文核心期刊、中国科技核心期刊
  • 第1、2届国家期刊奖
  • 第3届国家期刊奖百种重点期刊奖
  • 中国精品科技期刊、中国百强报刊
  • 百种中国杰出学术期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于色木枫转录组数据的核低拷贝基因引物开发

邓雅文,陈荣樟,鲍蕾,管宇,王红芳

downloadPDF
邓雅文, 陈荣樟, 鲍蕾, 管宇, 王红芳. 基于色木枫转录组数据的核低拷贝基因引物开发[J]. 必威精装版app官方下载苹果版 (自然科学版), 2022, 58(6): 844-850. doi: 10.12202/j.0476-0301.2022025
引用本文: 邓雅文, 陈荣樟, 鲍蕾, 管宇, 王红芳. 基于色木枫转录组数据的核低拷贝基因引物开发[J]. 必威精装版app官方下载苹果版 (自然科学版), 2022, 58(6): 844-850.doi:10.12202/j.0476-0301.2022025
DENG Yawen, CHEN Rongzhang, BAO Lei, GUAN Yu, WANG Hongfang. Low-copy nuclear gene primers based on transcriptome data of Acer pictum[J]. Journal of Beijing Normal University(Natural Science), 2022, 58(6): 844-850. doi: 10.12202/j.0476-0301.2022025
Citation: DENG Yawen, CHEN Rongzhang, BAO Lei, GUAN Yu, WANG Hongfang. Low-copy nuclear gene primers based on transcriptome data ofAcer pictum[J].Journal of Beijing Normal University(Natural Science), 2022, 58(6): 844-850.doi:10.12202/j.0476-0301.2022025

基于色木枫转录组数据的核低拷贝基因引物开发

doi:10.12202/j.0476-0301.2022025
基金项目:国家自然科学基金面上项目 (32071494, 32171654)
详细信息
    通讯作者:

    王红芳(1982—),女,博士,副教授. 研究方向:景观遗传学和谱系地理学. E-mail:wanghf@bnu.edu.cn

  • 中图分类号:Q37

Low-copy nuclear gene primers based on transcriptome data ofAcer pictum

  • 摘要:基于色木枫的转录组数据初步设计166对引物,并根据琼脂糖凝胶电泳与Sanger测序结果筛选出其中的26对核低拷贝基因引物.在东亚63个种群的182个个体中大批量扩增所开发引物,单倍型多样性范围为0.45~0.97,核苷酸多样性为(1.90~18.03)×10 −3;9~15对引物可在金钱槭、茶条槭、青榨槭和鸡爪槭中扩增;STRUCTURE聚类结果与之前核微卫星研究结果类似,且展示了更多的谱系地理结构,结果表明引物多态性高、拓展性强、具有可靠性.本研究的转录组数据为槭属的研究提供重要遗传信息,所用方法被证明可以有效开发大量核低拷贝基因引物,已开发出的26对引物将为色木枫的进化历史和槭属系统发育研究提供丰富有效的分子标记.

  • 图 1c80508_g1序列与最近的同源物种mRNA序列比对结果

    图 2无任何多态位点的情况

    图 3多态位点只以杂合形式存在的情况

    图 4多态位点既有杂合也有纯合的情况

    图 5STRUCTURE分析中L(K)(a)与ΔK(b)随K值的变化

    图 6K=2~11的遗传分组结果以及K=11时分组对应的地理位置

    A本研究中使用的样本种群及位置信息

    物种 种群 位置 纬度 经度 样本数
    Acer pictum 维西 云南 27.10 99.32 3
    香格里拉 云南 27.12 100.25 3
    泸沽湖 云南 27.74 100.75 3
    白马雪山 云南 28.29 99.17 3
    庐山 江西 29.50 115.93 3
    峨眉山 四川 29.55 103.32 3
    海螺沟 四川 29.57 101.99 3
    天平山 湖南 29.78 110.07 1
    黄山 安徽 30.14 118.16 3
    赛武当 湖北 32.43 110.75 3
    宝天曼 河南 33.49 111.95 3
    屋梁山 陕西 33.71 106.76 3
    神龙架 湖北 31.51 110.33 3
    鞍子河 四川 30.81 103.13 3
    唐家河 四川 32.53 104.62 2
    美姑 四川 28.50 102.87 3
    月河梁 陕西 33.57 108.62 3
    鹞落坪 安徽 31.01 116.11 3
    天目山 浙江 30.42 119.41 3
    小秦岭 河南 34.43 110.53 3
    大南坪 山西 36.46 111.89 3
    云梦山 河南 36.87 111.13 3
    天桂山 河北 38.26 113.71 3
    青崖寨 河北 36.98 113.80 3
    泰山 山东 36.25 117.10 3
    昆嵛山 山东 37.27 121.71 3
    东灵山 北京 40.01 115.44 3
    雾灵山 河北 40.58 117.39 3
    千山 辽宁 40.98 123.12 3
    辽河源 河北 41.31 118.50 3
    大板 辽宁 41.90 121.77 3
    大黑山 辽宁 42.01 120.48 3
    塞罕坝 河北 42.27 117.50 3
    大青沟 内蒙古 42.80 122.17 3
    克旗永隆村 内蒙古 43.57 117.75 3
    沂山 山东 36.20 118.61 3
    崂山 山东 36.21 120.60 3
    大连西郊 辽宁 38.90 121.46 3
    嶂石岩 河北 37.46 114.03 3
    大苏河 辽宁 41.93 125.00 3
    长白山 吉林 42.06 128.07 3
    汪清 吉林 43.35 130.18 3
    方正 黑龙江 45.67 128.99 3
    朗乡 黑龙江 46.69 129.06 3
    饶河 黑龙江 46.83 133.58 3
    乌伊岭 黑龙江 48.73 129.65 3
    胜山 黑龙江 49.48 126.78 3
    风月桥 黑龙江 44.79 130.82 3
    俄罗斯 俄罗斯 45.31 136.49 2
    智异山 朝鲜半岛 35.29 127.49 3
    伽里旺山 朝鲜半岛 37.43 128.56 3
    雪岳山 朝鲜半岛 38.17 128.49 3
    ohtaki 日本本州 35.84 137.54 3
    kitago 日本本州 36.72 138.15 3
    fuji 日本本州 35.30 138.72 2
    mikko 日本本州 36.75 139.42 3
    ura-hikimi 日本本州 34.55 132.05 3
    福岛 日本本州 37.69 140.07 3
    原野 日本本州 39.43 141.43 3
    村茶亭 日本北海道 43.41 144.64 3
    秋田 日本本州 40.01 140.61 3
    沾小厅 日本北海道 42.67 141.61 1
    雨龙厅 日本北海道 44.39 142.20 3
    Dipteronia sinensis 桑园 陕西 33.74 107.17 2
    Acer ginnala 宝天曼 河南 33.49 111.95 2
    Acer davidii 桑园 陕西 33.74 107.17 2
    Acer palmatum 宝天曼 河南 33.49 111.95 2
    下载: 导出CSV

    表 126对色木枫核低拷贝基因引物的位点信息

    位点 引物序列(5′–3′) 产物长度/
    bp
    退火温度/
    °C
    外显子/
    bp
    内含子/
    bp
    推测的功能
    AM00033 F:CTCACCCTCCAAGCAAT 327 62 1~236 237~327 Citrus sinensis protein kinase 2B, chloroplastic
    R:GGTCCTTCCAGTCTCCC
    AM00046 F:AAGAAGACCCTTATCAGTAT 631 50 1~89 90~191 Ziziphus jujuba cultivar Dongzao chromosome 12, ZizJuj_1.1
    R:TCCTTTGGCTTGTAGTT 192~629
    AM00059 F:CATTCGGCTTCACTATCT 311 53 1~114 115~214 Herrania umbratica cultivar Fairchild unplaced genomic scaffold, ASM216827v2 scaffold_50.0
    R:CGACTTCTCCACCTTTA 215~311
    AM00075 F:AGTCATCCAGCACTCTAC 268 59 136~258 1~135 Malus x domestica cultivar Golden Delicious chromosome 12, MalDomGD1.0
    R:CTCACTTACACCTCCCTA 259~268
    AM00096 F:TGGGAACGAAGAAACAT 320 56 1~291 292~320 Citrus sinensis serine/threonine-protein kinase KIPK-like
    R:ACACTACAGGCTACATACAAT
    AM00107 F:GTCCTCGGTAGGATGTTTGG 159 56 1~155 Citrus sinensis cultivar Valencia chromosome 4, Csi_Valencia_1.0
    R:ATCGAGAGCAAGAGCCGATA
    AM00126 F:TTCGGAGAAAGACAGGA 342 53 1~342 Citrus sinensis cultivar Valencia chromosome 9, Csi_Valencia_1.0
    R:GCTTACTAACAGGCACAGG
    AM00134 F:GCAGCAGCAAACAAAAAGAA 326 53 1~291 292~326 Bactrocera dorsalis strain Punador unplaced genomic scaffold
    R:GCCAATGATTTAGAGCAAGGA
    AM00150 F:TCAGAAGTCATGCCCATTCA 259 56 1~158 159~259 Gossypium arboreum cultivar Shixiya1 chromosome 11,
    Gossypium_arboreum_v1.0
    R:TCAAAATCCTCAACCCCAAG
    AM00410 F:ATCAAGCGAGGGAACGA 375 62 1~356 357~375 Theobroma cacao cultivar B97-61/B2 chromosome 7,
    Criollo_cocoa_genome_v2
    R:GAGCCAACCTGAGCACC
    AM00478 F:CAGTTTCACGAATGCTCCTC 385 65 267~385 1~266 Vitis vinifera cultivar PN40024 chromosome 18, 12X
    R:TGCCTCCAGTAGAATCCAAG
    AM00497 F:ATCCAACCCACATCACC 288 56 1~288 Durio zibethinus cultivar Musang King isolate D1 unplaced genomic scaffold, Duzib1.0 scaffold_27
    R:GGAACAACGAGCATTAGAG
    AM00498 F:CCAGGCAGGAGTCAAGT 205 53 1~205 Populus euphratica unplaced genomic scaffold, PopEup_1.0 scaffold50.1
    R:AAATGGACGAGCAAATC
    AM00500 F:CCTTATCTTTCTTCTTTCCCTT 143 59 1~143 Citrus sinensis cultivar Valencia chromosome 5, Csi_Valencia_1.0
    R:TATGCGTGCCGAACTGG
    AM00525 F:CGAGCAAGAATGTCAAA 272 53 1~181 Herrania umbratica cultivar Fairchild unplaced genomic scaffold,
    ASM216827v2 scaffold_4.1
    R:TCAAGGGCGATAATAAG 182~272
    AM00527 F:GCACCATCGTGTCTTTC 310 59 145~310 1~144 Durio zibethinus cultivar Musang King isolate D1 unplaced genomic scaffold
    R:GCAGTGGGAGTTCTTGTAT
    AM00549 F:CCACCATCGGAGAAACA 397 56 1~397 Citrus sinensis cultivar Valencia chromosome 7, Csi_Valencia_1.0
    R:AGCCCTTAGAGCCAAAA
    AM00566 F:AAGGGTGGATAGTCTGC 643 59 1~643 Citrus sinensis cultivar Valencia chromosome 5, Csi_Valencia_1.0
    R:AAGTGGAATGAGCGTAG
    AM00609 F:AGACAGGCACTCCAACAC 593 59 1~593 Citrus sinensis cultivar Valencia chromosome 9, Csi_Valencia_1.0
    R:AAGATTCTATCGGCACATT
    AM00612 F:ATCATACAATCTACAGCCACAA 297 56 1~293 Citrus sinensis cultivar Valencia chromosome 2, Csi_Valencia_1.0
    R:TCCAAGGGACCAAGCAAT
    AM00644 F:CATCAACCCAAGAATCCA 229 59 1~229 Xanthoceras sorbifolium microsatellite BI-H177 sequence
    R:GTCTGCCAATCAAGCCAC
    AM00645 F:GGCTATGGTAGATGGGTG 427 59 1~14,
    125~203,
    324~427
    Hevea brasiliensis cultivar reyan7-33-97 unplaced genomic scaffold,
    R:ATAAATCGCAAGGAGGGA ASM165405v1 scaffold0645
    AM00646 F:ATCAGAAGACCCTTACACTC 652 59 1~652 Durio zibethinus cultivar Musang King isolate D1 unplaced genomic scaffold, Duzib1.0 scaffold_6
    R:GTTTATCAGCAATCCCTC
    AM00661 F:CTCATCCAACGGGTCAA 416 53 1~416 Citrus sinensis cultivar Valencia unplaced genomic scaffold,
    Csi_Valencia_1.0 scaffold_0096
    R:GTCGTGCTCTACTTACAAACA
    AM00687 F:GAGCCAGCACTCCTAAC 399 53 1~399 Theobroma cacao cultivar B97-61/B2 chromosome 3,
    Criollo_cocoa_genome_v2
    R:CTCAAGAAGTATTTCACCC
    AM00699 F:GAGGTTGGTGCGGTCTG 406 59 1~406 Citrus sinensis cultivar Valencia chromosome 8, Csi_Valencia_1.0
    R:TCGCTTCCCGTTGCTAT
    下载: 导出CSV

    B转录组数据品质情况

    样品 原始序列个数 有效序列个数 有效数据量(G) 碱基错误率/% Q20/% Q30/% GC/%
    北师大 54974054 51152984 7.67 0.03 94.54 87.71 43.34
    大寺沟 47483932 44188476 6.63 0.03 94.65 87.94 44.26
    原始序列个数:统计未过滤的原始序列数据,以4行为1个单位,计算每个文件的测序序列的个数. 有效序列个数:相同计算方法统计过滤后的测序数据.后续的生物信息分析都是基于有效序列.有效数据量:测序序列的个数乘以测序序列的长度,并转化为以G为单位.Q20Q30P>20、30的碱基占总体碱基的百分比.GC含量:碱基G和C的数量总和占总碱基数量的百分比.
    下载: 导出CSV

    表 226个色木枫核低拷贝基因位点的遗传多样性和交叉扩增情况

    位点 样本量 变异
    位点
    单变异
    位点
    简约信息
    位点
    单倍型
    H
    单倍型
    多样性(Hd
    核苷酸多样性
    π×10−3
    Dipteronia
    sinensis
    Acer
    ginnala
    Acer
    davidii
    Acer
    palmatum
    AM00033 182 17 5 12 19 0.67 3.09 +
    AM00046 182 50 13 37 56 0.90 4.31 + +
    AM00059 181 16 4 12 17 0.50 2.11
    AM00075 182 35 9 26 50 0.87 7.81 +
    AM00096 182 27 11 16 30 0.60 2.86 + +
    AM00107 182 33 13 20 57 0.90 14.47 + + + +
    AM00126 182 37 11 26 46 0.88 8.87 +
    AM00134 173 74 19 55 61 0.93 18.03
    AM00150 182 20 8 12 23 0.83 6.76 + + + +
    AM00410 177 37 8 29 57 0.92 11.90 + + + +
    AM00478 182 34 4 30 27 0.79 10.64
    AM00497 182 17 3 14 19 0.63 3.48 + + + +
    AM00498 182 23 8 15 29 0.69 5.48 + + + +
    AM00500 182 6 1 5 7 0.62 5.23 + + +
    AM00525 172 36 11 25 37 0.83 9.36 + +
    AM00527 182 28 7 21 32 0.45 1.90 + +
    AM00549 182 43 13 30 56 0.94 9.05 + + + +
    AM00566 173 26 8 18 20 0.74 3.03
    AM00609 182 65 20 45 74 0.94 5.03 + +
    AM00612 182 45 18 27 51 0.89 13.28 + +
    AM00644 182 33 13 20 42 0.91 14.53 + + + +
    AM00645 178 65 27 38 57 0.78 6.76
    AM00646 182 42 13 29 52 0.88 3.67 +
    AM00661 182 69 19 50 63 0.94 12.19 + + + +
    AM00687 182 43 15 28 67 0.97 7.64 + + + +
    AM00699 172 43 13 30 49 0.83 5.20
    “+”表示该行引物可在该列物种中成功扩增;“−”表示该行引物无法在该列物种中成功扩增.
    下载: 导出CSV
  • [1] 徐廷志. 槭树科的地理分布[J]. 云南植物研究,1996,18(1):43
    [2] LIU C P,TSUDA Y,SHEN H L,et al. Genetic structure and hierarchical population divergence history ofAcer monovar.monoin South and Northeast China[J]. PLoS One,2014,9(1):e87187doi:10.1371/journal.pone.0087187
    [3] GUO X D,WANG H F,BAO L,et al. Evolutionary history of a widespread tree speciesAcer monoin East Asia[J]. Ecology and Evolution,2014,4(22):4332doi:10.1002/ece3.1278
    [4] YE J W,GUO X D,WANG S H,et al. Molecular evidence reveals a closer relationship between Japanese and mainland subtropical specimens of a widespread tree species,Acer mono[J]. Biochemical Systematics and Ecology,2015,60:143doi:10.1016/j.bse.2015.04.010
    [5] WU Z Y, RAVEN P, ZHANG L. Flora of China Illustrations, Volume 11[M]. Beijing: Science Publishing, 2009
    [6] XU T Z, CHEN Y S, DE JONG P C, et al. Flora of China Volume. 11[M]. Beijing: Science Press, 2008
    [7] 马兰,黄原. 单拷贝核基因在昆虫分子系统学中的应用[J]. 昆虫知识,2006,43(1):6
    [8] ZIMMER E A, WEN J. Using nuclear gene data for plant phylogenetics: Progress and prospects II. Next-gen approaches[J].Journal of Systematics and Evolution, 2015, 53(5): 371: 379
    [9] LI Z,DE LA TORRE A R,STERCK L,et al. Single-copy genes as molecular markers for phylogenomic studies in seed plants[J]. Genome Biology and Evolution,2017,9(5):1130doi:10.1093/gbe/evx070
    [10] 肖永. 基于转录组学桫椤科单拷贝分子标记开发与应用[D]. 广州: 仲恺农业工程学院, 2019
    [11] BAI W N, ZHANG D Y. Current status and future directions in plant phylogeography[J]. Chinese Bulletin of Life Sciences, 2014, 26(2): 125
    [12] SHEN H,JIN D M,SHU J P,et al. Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns[J]. Giga Science,2017,7(2):116
    [13] QI X P,KUO L Y,GUO C C,et al. A well-resolved fern nuclear phylogeny reveals the evolution history of numerous transcription factor families[J]. Molecular Phylogenetics and Evolution,2018,127:961doi:10.1016/j.ympev.2018.06.043
    [14] GRABHERR M G,HAAS B J,YASSOUR M,et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology,2011,29(7):644doi:10.1038/nbt.1883
    [15] HALL T. BioEdit:a user-friendly biological sequence alignment program for Windows 95/98/NT[J]. Nucleic Acids Symposium Series,1999,41:95
    [16] ROZAS J,SáNCHEZ-DELBARRIO J C,MESSEGUER X,et al. DnaSP,DNA polymorphism analyses by the coalescent and other methods[J]. Bioinformatics,2003,19(18):2496doi:10.1093/bioinformatics/btg359
    [17] GILBERT K J,ANDREW R L,BOCK D G,et al. Recommendations for utilizing and reporting population genetic analyses:the reproducibility of genetic clustering using the program structure[J]. Molecular Ecology,2012,21(20):4925doi:10.1111/j.1365-294X.2012.05754.x
    [18] EVANNO G,REGNAUT S,GOUDET J. Detecting the number of clusters of individuals using the software structure:a simulation study[J]. Molecular Ecology,2005,14(8):2611doi:10.1111/j.1365-294X.2005.02553.x
    [19] JAKOBSSON M,ROSENBERG N A. CLUMPP:a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure[J]. Bioinformatics,2007,23(14):1801doi:10.1093/bioinformatics/btm233
    [20] ROSENBERG N A. Distruct:a program for the graphical display of population structure[J]. Molecular Ecology Notes,2004,4(1):137
    [21] 张春兰,秦孜娟,王桂芝,等. 转录组与RNA-Seq技术[J]. 生物技术通报,2012(12):51doi:10.13560/j.cnki.biotech.bull.1985.2012.12.025
    [22] CURTO M A,PUPPO P,FERREIRA D,et al. Development of phylogenetic markers from single-copy nuclear genes for multi locus,species level analyses in the mint family (Lamiaceae)[J]. Molecular Phylogenetics and Evolution,2012,63(3):758doi:10.1016/j.ympev.2012.02.010
    [23] YE J W,LI Q,TIAN X Y,et al. Twenty-seven low-copy nuclear primers forLindera obtusiloba(Lauraceae):a tertiary relict species in East Asia[J]. Applications in Plant Sciences,2017,5(12):1700120doi:10.3732/apps.1700120
    [24] 陈君. 中国白栎组单拷贝核基因标记的开发及系统发育关系研究[D]. 北京: 中国林业科学研究院, 2017
    [25] 陈吉雯. 宽叶香蒲(Typha latifolia)单拷贝核基因标记的开发及谱系地理学研究[D]. 武汉: 武汉大学, 2020
    [26] WANG Q,YU Q S,LIU J Q. Are nuclear loci ideal for barcoding plants? A case study of genetic delimitation of two sister species using multiple loci and multiple intraspecific individuals[J]. Journal of Systematics and Evolution,2011,49(3):182doi:10.1111/j.1759-6831.2011.00135.x
    [27] 赵奉彬. 中国杨属物种DNA条形码及分子系统学初步研究[D]. 北京: 北京林业大学, 2016
    [28] 杨晨阳,于超,马玉杰,等. 基于SSR标记和单拷贝核基因的蔷薇属植物系统发生分析[J]. 北京林业大学学报,2018,40(12):85doi:10.13332/j.1000-1522.20180088
    [29] JOLY S,STARR J R,LEWIS W H,et al. Polyploid and hybrid evolution in roses east of the Rocky Mountains[J]. American Journal of Botany,2006,93(3):412doi:10.3732/ajb.93.3.412
    [30] EBERSBERGER I,STRAUSS S,VON HAESELER A. HaMStR:profile hidden Markov model based search for orthologs in ESTs[J]. BMC Evolutionary Biology,2009,9:157doi:10.1186/1471-2148-9-157
    [31] 刘勉,张彩飞,黄建勋,等. 利用低拷贝核基因重建菊科紫菀亚科族间系统发育关系[J]. 植物学报,2015,50(5):549doi:10.11983/CBB15164
    [32] WANG Q,LIU J Q,ALLEN G A,et al. Arctic plant origins and early formation of circumarctic distributions:a case study of the mountain sorrel,Oxyria digyna[J]. New Phytologist,2016,209(1):343doi:10.1111/nph.13568
    [33] HUANG C H,SUN R R,HU Y,et al. Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution[J]. Molecular Biology and Evolution,2016,33(2):394doi:10.1093/molbev/msv226
    [34] LI Y P,DAI C,HU C G,et al. Global identification of alternative splicing via comparative analysis of SMRT- and Illumina-based RNA-seq in strawberry[J]. The Plant Journal,2017,90(1):164doi:10.1111/tpj.13462
    [35] 马素平. 利用转录组测序数据分析可变剪接的方法[J]. 科学与信息化,2020(8):2
  • 加载中
图(6)/ 表(4)
计量
  • 文章访问数:64
  • HTML全文浏览量:29
  • PDF下载量:15
  • 被引次数:0
出版历程
  • 收稿日期:2022-01-11
  • 录用日期:2022-05-17
  • 网络出版日期:2022-12-07
  • 刊出日期:2022-12-01

目录

    /

      返回文章
      返回
        Baidu
        map